Intelligence and Behavioral Boundaries

Scott A. Wallace and John E. Laird
Artificial Intelligence Laboratory
University of Michigan
Ann Arbor, MI 48109, USA
{swallace,laird}@umich.edu

ABSTRACT

In this paper, we examine Newell’s definition of an agent’s intel-
ligence. The definition implies a very strict correlation between
the agent’s knowledge, its mind, and its behavior. Based on
this correlation we argue that a concise and well-formed repre-
sentation for the agent’s behavior is often essential for measur-
ing its intelligence. To meet this need, we present Behavioral
Bounding, a method that can be used to calculate a concise,
high-level representation of behavior. We examine both the
theoretical commitments of this approach, as well as practical
limitations.

KEYWORDS: version—spaces, behavior representations

1 INTRODUCTION

In his 1990 book, Unified Theories of Cognition (UTC) [6],
Newell observes that notions of intelligence are often linked
to an underlying service to a particular cause. In this
sense, there is no single universal concept of intelligence,
but rather a multitude of intelligence measures each re-
lated to a particular field, task, or area of interaction.
This idea gives rise to such common expressions as aca-
demic intelligence and real-world intelligence. As Newell
indicates, the value of an intelligence metric is presumably
to help identify which minds can perform which tasks, and
what their relative abilities might be.

As a foundation for talking about intelligent agents,
Newell introduces the notion of a knowledge—level sys-
tem [5, 6]. As he describes it, such a system is located
within an environment and performs a series of actions
to obtain its goals; it selects between potential actions
by using all of its relevant knowledge [6, pp. 50]. From
this concept, Newell constructs the following definition of
intelligence: “A system is intelligent to the extent that it
approximates a knowledge—level system” [6, pp. 90]. That
is, a system is perfectly intelligent if it uses all of its avail-
able knowledge to achieve its goals. Furthermore, lack of

Mind
(Agent Architecture)

Knowledge

Figure 1: A Knowledge-Level System

Behavior

knowledge is distinct from a lack of intelligence. Thus, it
often makes most sense to compare the intelligence of two
systems with respect to a explicit body of knowledge and
a specific problem domain as when one assess the impact
of street—smarts on academic activities.

Because a true knowledge-level system uses its knowledge
to generate behavior that achieves its goals, the system’s
behavior should be predictable (up to aspects of behavior
about which the agent is indifferent) so long as its knowl-
edge is completely known (see Figure 1). A system that
approximates the knowledge level, however, is one that
cannot reliably make use of all its knowledge. Prediction
of this system’s behavior requires knowing what the sys-
tem knows, as well as how its mind works (i.e. the imple-
mentation details governing how knowledge is brought to
bear, in essence the agent architecture).

The relationship between knowledge, mind and behavior
means that given information about two of these three
components, it is possible to make a reasonable hypothe-
sis about the third component. In this manner, one can
determine how well an agent approximates the knowledge—
level, how intelligent it is, so long as the agent’s knowledge
and its behavior are known.

2 BEHAVIOR & INTELLIGENCE

In some situations, it may be difficult or impossible to
completely and correctly specify the agent’s knowledge.
This may be because the agent cannot be trusted to ac-
curately communicate what it knows. Alternatively, it
may be because it is exceedingly difficult to interpret the
agent’s native encoding of knowledge. In either of these
two situations, it seems reasonable to rely on the knowl-
edge engineer, who designed the agent, to provide a spec-
ification for what the agent knows. Unfortunately, the
knowledge engineer’s response may be misleading. This
is because the agent’s knowledge may not have been fully
validated and thus may differ from the developers specifi-
cation (i.e. it may contain errors).

If it is impossible to completely and correctly specify the
agent’s knowledge, it is also impossible to apply Newell’s
definition of intelligence in its strict sense. However, we
may still profit from an approximate measure of intelli-
gence based on beliefs about what the agent knows. Since
these beliefs need not be completely accurate, they should
be relatively easy to obtain. Beliefs about the agent’s
knowledge may come from information offered by the
agent itself or from the designer of that agent. Given this
approximate information about the agent’s knowledge, we
can obtain an approximate measure of its intelligence by
observing its behavior.

Regardless of whether we have perfect information about
the agent’s knowledge, making an inference about the
agent’s intelligence requires the ability to classify and rep-
resent behavior in a concise, and well-formed structure.
In this paper, we will outline a technique for this pur-
pose. This technique, which we call Behavioral Bounding
(B-Bounding), allows us to construct a concise represen-
tation of how an agent may perform in various situations.
Once this representation has been computed, it can be
used to: obtain a true measure of the agent’s intelligence
(given complete information about the agent’s knowledge);
to compare relative approximate intelligence (between two
agents that are believed to have the same knowledge); or
validate an agent’s knowledge base (given complete infor-
mation about the capabilities of the agent’s mind). In this
paper, we will concern ourselves with the first two appli-
cations.

3 MEASURING INTELLIGENCE

As we outlined in Section 2, we can generate an approx-
imate measure of a system’s intelligence given a set of

beliefs about that system’s knowledge and a set of obser-
vations about its behavior. The basic process for deter-
mining the system’s intelligence is given by Algorithm 1.

Algorithm 1 Measure Intelligence
B + Beliefs About Agent’s Knowledge
O <+ Sequences of Observed Agent Behavior
I < Maz Intelligence
for all observed (state,action) sequence o in O do
if o can be explained using B then
do nothing
else
decrease I in a meaningful way!
end if
end for
return [

This algorithm will return a measure of the agent’s intel-
ligence given any observed behavior and any set of beliefs
about the agent’s knowledge. The exact nature of this al-
gorithm’s result, however, is closely tied to the quality of
input.

The first parameter of the algorithm is B, a set of beliefs
about the agent’s knowledge. The accuracy of the mea-
surement, will depend on how closely these beliefs reflect
the agent’s actual knowledge. If, for example, the be-
liefs turn out to have nothing in common with the agent’s
actual knowledge, none of the agent’s actions will be ex-
plainable, and so the agent will be presumed to have a
very low (or zero) intelligence, regardless of whether it is
a true knowledge-level system. On the other hand, if the
beliefs correspond exactly to the agent’s true knowledge,
then any incorrect behavior will be appropriately ascribed
to a lack of intelligence.

The second parameter of the algorithm, O, is a set of
(stateg, actiony) . . . (state,, action,) sequences describing
behavior the agent was observed performing. This pa-
rameter affects the generality of the measurement for the
agent’s intelligence. If the scope of action sequences spans
a large number of tasks and the agent’s behavior is di-
verse, the measurement of intelligence is likely to be more
general than if the agent was observed only within a very
narrow context. When determining what agent to select
for a particular task, one would like the most intelligent
agent with respect to the knowledge needed to perform
that task. Furthermore, if the task is well specified, the
agent’s intelligence in areas known to be outside of the

IThere are many possible methods of decreasing the agent’s in-
telligence score. Naively, one could set Imq, = 100, and for each
unexplained action decrease I by 1/N where N = total number of
explanations attempted thus producing a normalized measure. A
discussion of the consequences of different approaches, however, is
outside the scope of this paper.

task’s score can be ignored. On the other hand, if the ex-
act nature of the task is ill-defined, it may be important
that the agent have a high general intelligence, even if it
is less intelligent on some specific subset of tasks.

The simple algorithm we have presented allows the flexi-
bility to compute measurements of intelligence that span
different degrees of accuracy and generality. However, it
does suffer from two significant drawbacks if it is used to
compute a relatively general measure of intelligence.

Most importantly, Algorithm 1 requires explaining all the
actions in each sequence of observed agent behavior. As
the generality of the intelligence measure increases, the
number of agent traces used by the algorithm will also in-
crease. Since the cost of explaining each observation of
behavior is likely to be very high, this could make calcu-
lating certain measurements of intelligence infeasible.

In addition, Algorithm 1 does not have any built in
method to determine the breadth of behavior that was
examined to compute the agent’s intelligence. As a result,
it may be unclear what types of tasks the measurement
pertains to. Furthermore, in cases where the observations
of agent behavior are similar, we would like to be able to
exploit information acquired during previous explanations.

Improvements to the simple algorithm would reduce the
cost of general measures of intelligence, and provide an
indication of the space of tasks or situations to which the
measurement can be applied. In the remaining sections of
the paper, we describe the Behavioral Bounding method,
and how it can be used to overcome these shortcomings.

4 BEHAVIORAL BOUNDING

The Behavioral Bounding method can be used to over-
come the two faults with the basic Measure Intelligence
algorithm described in Section 2. The main idea behind
the methodology is to construct a concise high—level repre-
sentation of an agent’s behavior from a set of observations.
This new representation allows two new methods of mea-
suring general intelligence without explaining all of the
behavior in each observation. In addition, the representa-
tion itself can be used to obtain a measure of the diversity
of behavior encapsulated in the observed agent actions.

Conceptually, Behavioral Bounding is very similar to
Mitchell’s Version Space framework [4]. Given a language
to describe an agent’s behavior, and a general to specific
ordering over representations in this language, we can con-
struct a maximally specific representation of the observed
agent behavior. Figure 2 illustrates this concept. Each

Increasing
Representational
Generality

Observed ‘
Behavior (1) A

Observed
Behavior (2)
P Most Soecific

Common
Generalization

Figure 2: Ordered Behavior Representations

node corresponds to an abstract representation of behav-
ior. Nodes toward the top of the lattice are more specific
representations than nodes toward the bottom. Each of
the observed agent behaviors is mapped onto this lattice,
and the most specific common generalization can then be
used to represent all of the behaviors that have been ob-
served. Figure 2 illustrates a specific case with two obser-
vations of the agent’s behavior. The abstract representa-
tion covering both of these observations is their common
descendant.

Behavioral Bounding allows two new methods of measur-
ing intelligence, both of which have an improvement in
performance over our original simple algorithm. In the
first method, the abstract representation of the agent’s
behavior is computed using all the available observations.
Next, we substitute this abstract representation of behav-
ior for the set of observations, O, in the original algorithm
and proceed with the calculation in an otherwise normal
manner. The benefit of this approach is that the number
of explanations is no longer strictly a function of the num-
ber of observations. However, in practice this method may
be difficult to apply. This is because the induced behav-
ioral representation may be overly general, and as a result
may encapsulate behaviors that the agent cannot explain.
In such situations, the measurement of the agent’s intelli-
gence may be incorrect.

The second variation on our original algorithm overcomes
this flaw. This approach uses the generalized behavior rep-
resentation to tune the simple algorithm without actually
substituting it for the observed agent behavior O. As in
our first modification to the simple algorithm, we begin by
constructing a general representation of the agent’s behav-
ior. Just as before, we initialize this representation, R,
with the most specific representation of all possible behav-
ior (this corresponds to initializing the S—SET in standard
version space). Then, each observed behavior trace o € O
is used to iteratively generate a new general representa-
tion, R}, of 0 and R. In our first variation, this was done

by simply setting R, < R. and repeating for all o € O,
thereby obtaining a generalization of all the tracesin O. In
this second approach, however, we examine the differences
between R, and R, before proceeding with the generaliza-
tion. The aspects of R, that are more general than R,
indicate aspects of o that must be explained, whereas as-
pects of behavior that remain unchanged between R and
R! have already been explained in a previous iteration.
In this way the modified algorithm performs the minimal
amount of explication for any set of observations.

The second variation of our original algorithm hints as to
how the generalized behavior representation can be used
to measure the diversity of observed agent behavior. Af-
ter viewing a single instance of agent behavior, R, will be
generalized to the most specific representation that cov-
ers that behavior. Given progressively more instances of
behavior, R, will be generalized the minimal amount nec-
essary to cover these observations. A long series of obser-
vations in which the agent’s behavior is relatively similar
will result in very few generalizations. Thus, differences
(in terms of generality) between the most specific behavior
representation and the behavior representation that covers
all of the observations provides an automatic way of de-
termining the generality of the intelligence measurement.

5 IMPLEMENTING B-BOUNDING

At a theoretical level, Behavioral Bounding, has very few
requirements. All that is needed is a language capa-
ble of representing the agent’s behavior and an ordering
from specific to general over potential behavioral descrip-
tions in this language. However, in order to make B-—
Bounding practical, a number of other constraints must
be met. Most importantly, the language used to represent
an agent’s behavior must simultaneously be rich enough
to distinguish between appropriate and inappropriate be-
havior, while also being constrained enough so that the
learning problem remains tractable.

5.1 POTENTIAL REPRESENTATIONS

In order to determine a suitable language for describing
agent behavior at a high-level, we should begin by exam-
ining the representation of a single observation of behav-
ior. A single observation of behavior can be described by
the list of ordered pairs ((S1,B1),(S2, B2),- -, (Sn, Bn))
where ordered pair (S;, B;) indicates the behavior pur-
sued in the given state. (Note that we can guarantee the
uniqueness of the S; by including the value of a world
clock in the state description). At a minimum, each of the
B; encodes the external actions performed by the agent,

| Turn

| Open-Hand | | Reach | | CIoseHand|

Figure 3: Hierarchical Goal Structure

but in some cases, B; may contain additional information
about the agent’s behavior.

In the minimal case, where B; contains only the externally
observable action pursued by the agent, it is possible to
abstractly represent the space of behaviors with canon-
ical forms. Using this approach, states and actions are
grouped into equivalence classes. For example, two dis-
tinct actions Turn Right Quickly and Turn Right Slowly
might be grouped into a more generic Turn Right class.
Similarly, particular features of the state space may be
ignored within a portion of the problem domain yielding
a set of equivalent states. For example, minor deviations
from normal summer—time temperatures are unlikely to
impact the manner in which an airplane is controlled.

When abstraction is used to reduce the complexity of the
overall problem, each state and action in the observed be-
havior is replaced with the canonical form that represents
the equivalence class of the observable. This representa-
tion has the ability to greatly reduce the size of the be-
havioral representation space, but this ability comes at a
high cost. Using this method requires constructing these
equivalence classes based on properties of the task that
the agent is performing. Unfortunately, it is unlikely that
an automated approach would be able to correctly identify
these equivalence relations through direct examination of
the environment. Instead, it is much more likely that this
job would fall upon a human designer. Any additional
human effort will increase the cost of performing the in-
telligence test, but constructing equivalence classes may
be particularly costly because it must be done each time
the test is performed in a new environment.

A less costly method of constructing a high-level repre-
sentation of behavior can be performed if we assume the
ability to gather more information about the agent’s be-
havior. In particular, if we assume that the behavioral de-
scriptions B; contains both the agent’s external actions as
well as the agent’s motivation for performing that action
(i-e. the agent’s current goals), we can use a high-level
description of the agent’s behavior without constructing a
set of equivalence classes over states and actions.

Close-Hand

J <
Before Before

Before

Figure 4: Constrained Goal Structure

5.2 EXPLOITING GOAL STRUCTURE

Because an agent’s knowledge is structured around goals
and actions, development of the agent’s knowledge base
is likely to profit from an explicit representation of these
relationships. We will call this representation a goal hier-
archy (see Figure 3) and it can be used to define a mean-
ingful structure for the agent’s knowledge similar to the
way an outline serves to help structure the ideas in an ar-
ticle. The inner nodes in the goal hierarchy correspond
to goals, while the leaves correspond to primitive actions.
A node’s descendants are the sub—goals and actions that
may help to achieve the goal represented by the specified
node.

The relationships described in the goal hierarchy make it
possible to identify the set of primitive actions one would
expect to observe from an agent pursing any particular
goal. Thus, according to behavior represented by Figure 3,
one would expect that an agent pursuing the goal of Go
To Boz would use the primitive actions Walk and Turn. A
goal hierarchy in this form can be viewed as a general spec-
ification for behavior. By defining a set of constraints that
can be added to the hierarchy, we can increase the speci-
ficity of the behavioral representation. This new language,
formed by the goal hierarchy and constraints that can act
upon it, can then be used by the B-Bounding technique to
generate a concise representation of an agent’s behavior.

To determine an appropriate set of constraints, we look to
previous work in Hierarchical Task Networks (HTNs) [3,
1] from the planning community and Goal, Operator,
Method and Selection—Rule (GOMS) models [2] from the
HCI community.

HTNs consist of two types of nodes: goals and primitive
actions. Methods indicate how goals decompose into se-
quences of sub—goals (or at the lowest level of abstraction,
into primitive actions). Clearly, the HTN model has much
in common with the goal hierarchy described above. How-
ever it also expands upon the basic structure in two ways:

1. HTNs explicitly represent alternative ways of decom-
posing a goal into sub—goals.

2. HTNs are able to explicitly represent ordering con-
straints between siblings nodes (so, for example, a
method can describe a specific order in which the sub—
goals must be accomplished).

GOMS models also consist of two types of nodes: goals
and operators, which map directly onto the primitive ac-
tions of HTNs. Methods in a GOMS model performs the
same function as in HTNs, and it is assumed that these
methods have the ability to represent ordering constraints
on the nodes in the decomposition. The main difference
between HTNs and GOMS models is that the later use
explicit structures (selection—rules) to determine the set
of methods that are appropriate for a particular situation.

Our representation language is constructed from the com-
mon components that underlie both HTNs and GOMS
models. Specifically, we have two distinct types of con-
straints: goal types and ordering constraints. Goals can
be either of two types AND or OR. An AND node indi-
cates that in order to accomplish the goal represented by
the node, all of the children must be accomplished. An
OR node indicates that one (or more, but not all) of the
children must be accomplished in order to accomplish the
goal. By using multiple levels of the hierarchy AND and
OR nodes can be used to represent alternative methods for
solving a higher—level goal, just as in HTNs and GOMS
models. The second type of constraint in our model in-
dicates the valid orders in which goals or actions can be
accomplished. For this purpose, we use binary temporal
constraints, to build a partial ordering between the chil-
dren of each goal node. Figure 4 illustrates a goal hier-
archy that is partially constrained. In this example, the
constraints indicate:

e Achieving the goal Get Mail requires accomplishing
both of the sub—goals Go To Box and Grab Letters.

e Achieving the goal Grab Letters requires performing
the actions Open Hand, Reach, and Close Hand in
that order.

With these two types of constraints we can specify a gen-
eral to specific ordering over abstract behavior represen-
tations. In this ordering, the maximally general behavior
specification is one in which all nodes are of type OR, and
no temporal constraints exist. The maximally specific be-
havior representation in which all goals are of type AND
and there is a total ordering between all siblings. Because
these constraints underlie both GOMS models and HTNs,
we can be confident that they will provide a good medium

for representing behavior in a variety of domains. Further-
more, because the goal-hierarchy itself can be used as an
organizational tool to help outline and develop the agent’s
knowledge, it is likely that this representation can be used
with little cost.

6 CONCLUSION

The definitions put forth in Newell’s book Unified Theories
of Cognition provide a basis for constructing a simple al-
gorithm to measure the intelligence of a particular system.
However, a straightforward implementation of this metric
may require impractical computational resources when a
measurement of general intelligence is required. We have
presented the Behavioral Bounding method that mitigates
this problem by ensuring that the minimal amount of com-
putation is performed to gain a measurement of an agent’s
intelligence. In addition, Behavioral Bounding can be used
to explicitly indicate the relative generality of a particular
intelligence measurement, thus overcoming another flaw in
the original algorithm without incurring additional cost.

Recently, our research has been focusing on using the Be-
havior Bounding method to validate an agent’s knowledge
based on observations of its behavior (the third applica-
tion of B-Bounding outlined in Section 2). We have imple-
mented and begun an investigation of Behavioral Bound-
ing using the goal hierarchy and constraint language dis-
cussed in Section 5.2. Future work will focus on enriching
the constraint language and new uses for this technique.

REFERENCES

[1] Kutluhan Erol, James Hendler, and Dana S. Nau.
UMCP: A sound and complete procedure for hierar-
chical task—network planning. In Artificial Intelligence
Planning Systems, pages 249-254, 1994.

[2] Bonnie E. John and David E. Kieras. The GOMS
family of user interface analysis techniques: Compar-
ison and contrast. ACM Transactions on Computer—
Human Interaction, 3(4):320-351, 1996.

[3] Subbarao Kambhampati. A comparative analysis of
partial order planning and task reduction planning.
SIGART Bulletin, 6(1):16-25, 1995.

[4] Tom M. Mitchell. Generalization as search. Artificial
Intelligence, 18(2):203—-226, 1982.

[5] Allen Newell. The knowledge level. AT Magazine, 2(2),
1981.

[6] Allen Newell. Unified Theories of Cognition. Harvard
University Press, Cambridge, Mass, 1990.

